Therapeutic Effects and Mechanisms of Berberine on Enteritis Caused by Salmonella in Poultry

Frontiers in microbiology(2024)

引用 0|浏览0
摘要
The present study aimed to investigate the therapeutic effects of berberine (BBR) on Salmonella enteritis in broiler chickens and to elucidate its mechanisms of action preliminarily. Blood samples were collected from 21- to 35-day-old Sanhuang male chicks to measure immune and biochemical indicators and to calculate the organ coefficients for the liver, spleen, bursa of Fabricius, and thymus. The caecal microbiota was analysed through 16S ribosomal RNA (rRNA) gene sequencing, and transcriptome sequencing was conducted. Compared with the positive control group (S), the berberine-treated group (BS) presented increased serum immunoglobulin M (IgM) levels, serum IgG levels, and total antioxidant capacity; berberine ameliorated the increase in the thymus index caused by Salmonella administration. The addition of berberine to the diet increased the abundance of beneficial bacterial genera, including Bacteroides and Lactobacillus. It also decreased the abundance of harmful bacterial genera, including Faecalibacterium and Streptococcus. Transcriptome analysis revealed that gene expression in the S and BS groups was associated with T cell selection and B cell receptor signalling pathways, which are enriched primarily in multiple immune-related signalling pathways, including the B cell receptor signalling pathway, NF-κ B signalling pathway, intestinal immune network for IgA production, asthma, and African trypanosomiasis. The significantly expressed genes included ATAD5, ERP29, MGST2, PIK3CA, and HSP90AA1. The present study demonstrated that berberine has a good therapeutic effect on Salmonella infection in chicks, as it inhibits the occurrence and development of Salmonella-induced intestinal inflammation by regulating the balance of the gut microbiota and the expression of related genes, including ATAD5, ERP29, MGST2, PIK3CA, and HSP90AA1.
更多
查看译文
关键词
berberine,salmonellosis,intestinal flora,transcriptome,broiler
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn