Evolution of the Liquid/Solid Interface Roughness in Si1-Xgex Layers Processed by Nanosecond Laser Annealing
Applied Surface Science(2024)
摘要
Pulsed laser annealing is a relevant alternative to conventional thermal processes for future technology nodes as it enables the application of a fast and local thermal budget. Such high-energy process can lead to the formation of a liquid phase that recrystallizes upon heat dissipation, through a high velocity liquid/solid interface moving towards the surface. Here, we report on the evolution of the liquid/solid interface roughness and its influence on the crystallinity of Si1-xGex layers depending on multiple parameters (strain state, doping level, Ge content, and pulse duration). This has been conducted with a roughness quantification method based on cross-section STEM-HAADF micrographs. It has been established that the liquid/solid roughness can be decreased by: (i) a compressive strain decrease, (ii) the use of short duration laser pulses or (iii) a reduction of the initial Ge content. The Ge content and strain must correspond to suitable values for optimized MOSFET performances. Consequently, strain and pulse duration were found to be pertinent levers for liquid/solid interface roughness reduction. Increasing the amount of boron atoms in s-Si1-xGex:B/Si systems is another relevant strategy, as compressive strain decrease would then be associated with a beneficial contact resistance lowering in the source-drain regions of p-type MOSFET devices.
更多查看译文
关键词
Pulsed laser annealing,Silicon–germanium,Strain,Liquid–solid interface,Roughness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn