PlantRing: A High-Throughput Wearable Sensor System for Decoding Plant Growth, Water Relations and Innovating Irrigation

biorxiv(2024)

引用 0|浏览0
摘要
The combination of flexible electronics and plant science has generated various plant-wearable sensors, yet challenges persist in their applications in real-world agriculture, particularly in high-throughput settings. Overcoming the trade-off between sensing sensitivity and range, adapting them to a wide range of crop types, and bridging the gap between sensor measurements and biological understandings remain the primary obstacles. Here we introduce PlantRing, an innovative, nano-flexible sensing system designed to address the aforementioned challenges. PlantRing employs bio-sourced carbonized silk georgette as the strain sensing material, offering exceptional resolution (tensile deformation: < 100 μm), stretchability (tensile strain up to 100 %), and remarkable durability (season long), exceeding existing plant strain sensors. PlantRing effectively monitors plant growth and water status, by measuring organ circumference dynamics, performing reliably under harsh conditions and being adaptable to a wide range of plants. Applying PlantRing to study fruit cracking in tomato and watermelon reveals novel hydraulic mechanism, characterized by genotype-specific excess sap flow within the plant to fruiting branches. Its high-throughput application enabled large-scale quantification of stomatal sensitivity to soil drought, a traditionally difficult-to-phenotype trait, facilitating drought tolerant germplasm selection. Combing PlantRing with soybean mutant led to the discovery of a potential novel function of the GmLNK2 circadian clock gene in stomatal regulation. More practically, integrating PlantRing into feedback irrigation achieves simultaneous water conservation and quality improvement, signifying a paradigm shift from experience- or environment-based to plant-based feedback control. Collectively, PlantRing represents a groundbreaking tool ready to revolutionize botanical studies, agriculture, and forestry. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn