ReMAP: Neural Model Reprogramming with Network Inversion and Retrieval-Augmented Mapping for Adaptive Motion Forecasting

NeurIPS 2024(2024)

引用 0|浏览0
摘要
Mobility impairment caused by limb loss, aging, stroke, and other movement deficiencies is a significant challenge faced by millions of individuals worldwide. Advanced assistive technologies, such as prostheses and orthoses, have the potential to greatly improve the quality of life for such individuals. A critical component in the design of these technologies is the accurate forecasting of reference joint motion for impaired limbs, which is hindered by the scarcity of joint locomotion data available for these patients. To address this, we propose ReMAP, a novel model repurposing strategy that leverages deep learning's reprogramming property, incorporating network inversion principles and retrieval-augmented mapping. Our approach adapts models originally designed for able-bodied individuals to forecast joint motion in limb-impaired patients without altering model parameters. We demonstrate the efficacy of ReMAP through extensive empirical studies on data from below-knee amputated patients, showcasing significant improvements over traditional transfer learning and fine-tuning methods. These findings have significant implications for advancing assistive technology and mobility for patients with amputations, stroke, or aging.
更多
查看译文
关键词
Model reprogramming,Patient mobility,Time series,Forecasting,Retrieval,Network inversion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn