Social Contact Patterns and Their Impact on the Transmission of Respiratory Pathogens in Rural China
Infectious Disease Modelling(2024)
摘要
Introduction Social contact patterns significantly influence the transmission dynamics of respiratory pathogens. Previous surveys have quantified human social contact patterns, yielding heterogeneous results across different locations. However, significant gaps remain in understanding social contact patterns in rural areas of China. Methods We conducted a pioneering study to quantify social contact patterns in Anhua County, Hunan Province, China, from June to October 2021, when there were minimal coronavirus disease-related restrictions in the area. Additionally, we simulated the epidemics under different assumptions regarding the relative transmission risks of various contact types (e.g., indoor versus outdoor, and physical versus non-physical). Results Participants reported an average of 12.0 contacts per day (95% confidence interval: 11.3–12.6), with a significantly higher number of indoor contacts compared to outdoor contacts. The number of contacts was associated with various socio-demographic characteristics, including age, education level, income, household size, and travel patterns. Contact patterns were assortative by age and varied based on the type of contact (e.g., physical versus non-physical). The reproduction number, daily incidence, and infection attack rate of simulated epidemics were remarkably stable. Discussion We found many intergenerational households and contacts that pose challenges in preventing and controlling infections among the elderly in rural China. Our study also underscores the importance of integrating various types of contact pattern data into epidemiological models and provides guidance to public health authorities and other major stakeholders in preparing and responding to infectious disease threats in rural China.
更多查看译文
关键词
Social contact,Infectious disease,Respiratory pathogens,Mathematical modeling,Rural areas
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn