Neddylation Drives Myofibrillogenesis in the Developing Heart
FASEB journal official publication of the Federation of American Societies for Experimental Biology(2024)
摘要
Neddylation is a highly conserved post-translational modification that plays critical roles in various cellular processes through the modulation of cullins and non-cullin substrates. While neddylation is known to be essential for embryonic development, tumor growth, and organogenesis of different tissues, its role in cardiogenesis remains unexplored. Here, we investigated the role of neddylation in early cardiac development by deleting the gene encoding a regulatory subunit of the NEDD8-specific E1 activating enzyme, Nae1, globally and in a heart-specific fashion via Nkx2-5Cre. Global deletion of Nae1 in mice led to embryonic lethality before embryonic day (E) 8.5, whereas cardiac-specific NAE1 knockout mice died at around E12.5 with pronounced cardiac effusion and peripheral hemorrhage, characteristic of cardiac failure. Histological analysis revealed significant thinning of the compact myocardium and reduced trabeculae in mutant hearts, which were accompanied by reduced cardiomyocyte proliferation. Unbiased transcriptomic analysis identified perturbations in cardiomyocyte proliferation and myofibril architecture in mutant hearts. Subsequent analysis showed that loss of NAE1 disrupted sarcomere assembly dysregulated the expression of several important contractile proteins, and impaired mitochondrial function in the developing heart, which was accompanied by downregulation of key cardiac transcription factors including NKX2-5 and SRF. Collectively, our findings demonstrate the essential role of neddylation in cardiogenesis at least in part by driving cardiomyocyte proliferation and myofibrillogenesis.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn