Enhanced Photovoltaic Performance and Thermal Stability of CH3NH3PbI3 Perovskite Through Lattice Symmetrization.

ACS applied materials & interfaces(2018)

引用 21|浏览27
摘要
The organic-inorganic lead halide perovskites are attractive materials for photovoltaic application. The most widely studied perovskites based on methyl ammonium organic cation are less likely to form an ideal high-symmetry configuration at room temperature, leading to the appearance of local lattice strain. Herein, this study reports a strategy for the construction of thermally stable cubic perovskites at room temperature through the incorporation of the larger organic cation dimethyl ammonium. Detailed characterization on the single crystals and thin films reveals the formation of cubic phase with the addition of a certain amount of dimethyl ammonium at room temperature. With the presence of dimethyl ammonium, the nonradiative recombination in perovskite is suppressed, showing a longer PL lifetime and hole diffusion length. The more efficient charge extraction leads to an improvement in the photocurrent density, and then the device efficiency from 17.1% to 18.6%, together with an enhanced thermal stability at 85 °C. The influence of incorporating a larger organic cation on the structural configuration, optical properties, charge extraction, as well as the photovoltaic performance is systematically investigated, which offers an alternative way to improve the intrinsic stability of hybrid perovskites.
更多
查看译文
关键词
dimethyl ammonium,lattice symmetrization,charge extraction,perovskite solar cell,thermal stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn