Dynamic Graph Convolutional Recurrent Network for Traffic Prediction: Benchmark and Solution.

ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA(2023)

引用 84|浏览27
摘要
Traffic prediction is the cornerstone of intelligent transportation system. Accurate traffic forecasting is essential for the applications of smart cities, i.e., intelligent traffic management and urban planning. Although various methods are proposed for spatio-temporal modeling, they ignore the dynamic characteristics of correlations among locations on road network. Meanwhile, most Recurrent Neural Network based works are not efficient enough due to their recurrent operations. Additionally, there is a severe lack of fair comparison among different methods on the same datasets. To address the above challenges, in this article, we propose a novel traffic prediction framework, named Dynamic Graph Convolutional Recurrent Network (DGCRN). In DGCRN, hyper-networks are designed to leverage and extract dynamic characteristics from node attributes, while the parameters of dynamic filters are generated at each time step. We filter the node embeddings and then use them to generate dynamic graph, which is integrated with pre-defined static graph. As far as we know, we are first to employ a generation method to model fine topology of dynamic graph at each time step. Furthermore, to enhance efficiency and performance, we employ a training strategy for DGCRN by restricting the iteration number of decoder during forward and backward propagation. Finally, a reproducible standardized benchmark and a brand new representative traffic dataset are opened for fair comparison and further research. Extensive experiments on three datasets demonstrate that our model outperforms 15 baselines consistently. Source codes are available at https://github.com/tsinghua-fib-lab/Traffic-Benchmark .
更多
查看译文
关键词
Traffic prediction,dynamic graph construction,traffic benchmark
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn