Liana Versus Tree Seedling Responses to Spatial and Temporal Variation in Dry Season Severity

Sergio Estrada-Villegas,Luke Browne, Eric Manzane-Pinzon,Liza S. Comita

ECOSPHERE(2024)

引用 0|浏览0
摘要
AbstractLianas are key components of tropical forests, particularly at sites with more severe dry seasons. In contrast, trees are more abundant and speciose in wetter areas. The seasonal growth advantage (SGA) hypothesis postulates that such contrasting distributions are produced by higher liana growth relative to trees during seasonal droughts. The SGA has been investigated for larger size classes (e.g., ≥5 cm diameter at 1.3 m, dbh), but rarely for seedlings. Using eight annual censuses of >12,000 seedlings of 483 tree and liana species conducted at eight 1‐ha plots spanning a strong rainfall gradient in central Panama, we evaluated whether liana seedlings had higher growth and/or survival rates than tree seedlings at sites with stronger droughts. We also tested whether an extreme El Niño drought during the study period had a more negative effect on tree compared to liana seedlings. The absolute density of liana seedlings was similar across the rainfall gradient, ranging from 0.32 individuals/m2 (0.20–0.49, 95% credible interval [CI]) at the driest end of the gradient and 0.27 individuals/m2 (0.13–0.51 95% CI) at the wettest end of the gradient. The relative density of liana seedlings compared to tree seedlings was higher at sites with stronger dry seasons (0.27, 0.21–0.33, 95% CI), compared to wetter sites (0.12, 0.04–0.20 95% CI), due to lower tree seedling densities at drier sites. However, liana seedlings did not grow or survive better than tree seedlings in drier sites compared to wetter sites. Tree seedlings were more negatively impacted in terms of mortality by the extreme El Niño drought than liana seedlings, with an increase in annual mortality rate of 0.013 (0.003–0.025 95% CI) compared to lianas of −0.009 (−0.028 to 0.008 95% CI), but not growth. Our results indicate that lianas do not have a SGA over trees at the seedling stage. Instead, higher survival of liana versus tree seedlings during severe droughts or differences in liana versus tree fecundity or germination across the rainfall gradient likely explain why liana seedlings have higher relative densities at drier sites.
更多
查看译文
关键词
2015-2016 El Ni & ntilde,o event,dry season severity,extreme drought,growth,hierarchical Bayesian models,mortality,Panama,rainfall gradient,seasonal growth advantage,tropical forest
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn