Scaling Law of Real Traffic Jams under Varying Travel Demand
EPJ DATA SCIENCE(2024)
摘要
The escalation of urban traffic congestion has reached a critical extent due to rapid urbanization, capturing considerable attention within urban science and transportation research. Although preceding studies have validated the scale-free distributions in spatio-temporal congestion clusters across cities, the influence of travel demand on that distribution has yet to be explored. Using a unique traffic dataset during the COVID-19 pandemic in Shanghai 2022, we present empirical evidence that travel demand plays a pivotal role in shaping the scaling laws of traffic congestion. We uncover a noteworthy negative linear correlation between the travel demand and the traffic resilience represented by scaling exponents of congestion cluster size and recovery duration. Additionally, we reveal that travel demand broadly dominates the scale of congestion in the form of scaling laws, including the aggregated volume of congestion clusters, the number of congestion clusters, and the number of congested roads. Subsequent micro-level analysis of congestion propagation also unveils that cascade diffusion determines the demand sensitivity of congestion, while other intrinsic components, namely spontaneous generation and dissipation, are rather stable. Our findings of traffic congestion under diverse travel demand can profoundly enrich our understanding of the scale-free nature of traffic congestion and provide insights into internal mechanisms of congestion propagation.
更多查看译文
关键词
Traffic congestion,Travel demand,Scaling law,Complex systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn