Population Digital Health: Continuous Health Monitoring and Profiling at Scale.
Online Journal of Public Health Informatics(2024)
摘要
This paper introduces population digital health (PDH)—the use of digital health information sourced from health internet of things (IoT) and wearable devices for population health modeling—as an emerging research domain that offers an integrated approach for continuous monitoring and profiling of diseases and health conditions at multiple spatial resolutions. PDH combines health data sourced from health IoT devices, machine learning, and ubiquitous computing or networking infrastructure to increase the scale, coverage, equity, and cost-effectiveness of population health. This contrasts with the traditional population health approach, which relies on data from structured clinical records (eg, electronic health records) or health surveys. We present the overall PDH approach and highlight its key research challenges, provide solutions to key research challenges, and demonstrate the potential of PDH through three case studies that address (1) data inadequacy, (2) inaccuracy of the health IoT devices’ sensor measurements, and (3) the spatiotemporal sparsity in the available digital health information. Finally, we discuss the conditions, prerequisites, and barriers for adopting PDH drawing on from real-world examples from different geographic regions.
更多查看译文
关键词
digital health,population health,modeling, health data,health monitoring,monitoring,wearable devices,wearables,machine learning,networking infrastructure,cost-effectiveness,device,sensor,PDH,equity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn